十大算法【转】

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理, 而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)


一、蒙特卡罗算法 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam和Nick Metropolis共同发明了,蒙特卡罗方法。此算法被评为20世纪最伟大的十大算法之一 。蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡罗方法的基本原理及思想如下: 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。蒙特卡罗方法与一般计算方法有很大区别,一般计算方法对于解决多维或因素复杂的问题非常困难,而蒙特卡罗方法对于解决这方面的问题却比较简单。其特点如下:
I、 直接追踪粒子,物理思路清晰,易于理解。
II、 采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。
III、不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。等等。

二、数据拟合、参数估计、插值等数据处理算法我们通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。数据拟合在数学建模比赛中中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年数学建模美国赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在 MATLAB 中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。

三、线性规划、整数规划、多元规划、二次规划等规划类问题数学建模竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用 Lindo 、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。

四、图论算法这类问题算法有很多,包括: Dijkstra 、 Floyd 、 Prim 、 Bellman-Ford,最大流,二分匹配等问题。关于此类图论算法,可参考Introduction to Algorithms--算法导论,关于图算法的第22章-第26章。同时,本BLOG内经典算法研究系列,对Dijkstra算法有所简单描述,经典算法研究系列:二、Dijkstra 算法初探。

五、动态规划、回溯搜索、分治算法、分支定界等计算机算法在数学建模竞赛中,如:92年B题用分枝定界法,97年B题是典型的动态规划问题,此外98年B题体现了分治算法。这方面问题和 ACM 程序设计竞赛中的问题类似,推荐看一下算法导论,与《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。

六、最优化理论的三大经典算法:模拟退火法、神经网络、遗传算法这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。在数学建模竞赛中:比如97年A题的模拟退火算法,00年B题的神经网络分类算法,01年B题这种难题也可以使用神经网络,还有美国竞赛89年A题也和BP算法有关系,当时是86年刚提出BP算法,89年就考了,说明赛题可能是当今前沿科技的抽象体现。03 年 B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。另,本人对人工智能非常感兴趣,遗传算法已在本BLOG内有所阐述,

七、网格算法和穷举法网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在 N个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在 [ a; b ]区间内取 M +1 个点,就是 a; a +( b ? a ) =M; a +2 ¢ ( b ? a ) =M ; …;b那么这样循环就需要进行 ( M + 1) N 次运算,所以计算量很大。在数学建模竞赛中:比如 97 年 A 题、99年B题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB做网格,否则会算很久。穷举法大家都熟悉,自不用多说了。

八、一些连续离散化方法大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。

九、数值分析算法数值分析(numerical analysis),是数学的一个分支,主要研究连续数学(区别于离散数学)问题的算法。如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为像数值分析中有很多函数一般的数学软件是具备的。

十、图象处理算法在数学建模竞赛中:比如01 年 A 题中需要你会读 BMP 图象、美国赛 98年A题需要你知道三维插值计算,03年B题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。
新加评论 评论标题: